Find the time complexity of below methods in Big-Oh NOTE: Key is given at the end. Try to find answers on your own before using the key. void method0 (int n) { int counter = 0; for (int i=0; i<n; i++) counter++; } void method1(int n) { int counter = 0; for (int i=0; i<n; i++) for (int j=0; j<n; j++) counter++; } void method2(int n) { int counter = 0; for (int i=0; i<n; i++) for (int j=0; j<n; j++) for (int k=0; k<n; k++) counter++; } void method3(int n) { int counter = 0; for (int i=1; i<n; i=i*2) counter++; } void method4(int n) { int counter = 0; for (int i=0; i<n; i++) for (int j=1; j<n; j=j*2) counter++; } void method5(int n) { int counter = 0; for (int i=2; i<n && i!=0; i*=i) counter++; } int method6(int n) { if (n==0) return 1; return method6(n-1) + method6(n-1); } Key method0 - O(n) method1 - O(n^2) method2 - O(n^3) method3 - O(log n) method4 - O(n log n) method5 - O(log log n) method6 - O(2^n)